Modelling Representation Noise in Emotion Analysis using Gaussian Processes
نویسنده
چکیده
Emotion Analysis is the task of modelling latent emotions present in natural language. Labelled datasets for this task are scarce so learning good input text representations is not trivial. Using averaged word embeddings is a simple way to leverage unlabelled corpora to build text representations but this approach can be prone to noise either coming from the embedding themselves or the averaging procedure. In this paper we propose a model for Emotion Analysis using Gaussian Processes and kernels that are better suitable for functions that exhibit noisy behaviour. Empirical evaluations in a emotion prediction task show that our model outperforms commonly used baselines for regression.
منابع مشابه
Modelling Smooth Paths Using Gaussian Processes
A generative model based on the gaussian mixture model and gaussian processes is presented in this paper. Typical motion paths are learnt and then used for motion prediction using this model. The principal novel aspect of this approach is the modelling of paths using gaussian processes. It allows the representation of smooth trajectories and avoids discretization problems found in most existing...
متن کاملSpeech Enhancement using Adaptive Data-Based Dictionary Learning
In this paper, a speech enhancement method based on sparse representation of data frames has been presented. Speech enhancement is one of the most applicable areas in different signal processing fields. The objective of a speech enhancement system is improvement of either intelligibility or quality of the speech signals. This process is carried out using the speech signal processing techniques ...
متن کاملDerivative processes for modelling metabolic fluxes
MOTIVATION One of the challenging questions in modelling biological systems is to characterize the functional forms of the processes that control and orchestrate molecular and cellular phenotypes. Recently proposed methods for the analysis of metabolic pathways, for example, dynamic flux estimation, can only provide estimates of the underlying fluxes at discrete time points but fail to capture ...
متن کاملComparative Analysis of Image Denoising Methods Based on Wavelet Transform and Threshold Functions
There are many unavoidable noise interferences in image acquisition and transmission. To make it better for subsequent processing, the noise in the image should be removed in advance. There are many kinds of image noises, mainly including salt and pepper noise and Gaussian noise. This paper focuses on the research of the Gaussian noise removal. It introduces many wavelet threshold denoising alg...
متن کاملFractional Brownian Motion Approximation Based on Fractional Integration of a White Noise
We study simple approximations to fractional Gaussian noise and fractional Brownian motion. The approximations are based on spectral properties of the noise. They allow one to consider the noise as the result of fractional integration/differentiation of a white Gaussian noise. We study correlation properties of the approximation to fractional Gaussian noise and point to the peculiarities of per...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017